国家自彩票平台- 彩票网站- APP下载 【官网推荐】然科学基金1个专项项目申请指南发布

2025-12-31

  彩票平台,彩票网站,彩票APP下载

国家自彩票平台- 彩票网站- 彩票APP下载 【官网推荐】然科学基金1个专项项目申请指南发布

  自从Shor提出的快速分解大整数的量子算法以来,量子信息安全和通信领域正飞速发展。然而由于量子计算根据量子力学原理设计,因此局限于从量子态经过量子门(酉矩阵)到量子态的计算,如何构造求解经典科学与工程问题和机器学习的量子算法面临极大的挑战。另外量子算法的数学理论,包括量子复杂度的研究仍处于萌芽状态,对其深入的研究对探究量子计算的基本原理、判断一个计算问题是否存在有效算法、开拓新的应用领域和发展新的量子算法,具有重大意义。为此,国家自然科学基金设立“量子计算的数学基础理论”专项项目,支持该领域研究。

  构造求解一般确定、带不确定性和随机的线性常微和偏微分方程及相应的边值和界面问题的具有量子优势的量子模拟方法。构造这些问题的既适合连续变量也适用于量子比特框架的、适用于近期可望实现的模拟量子计算机运算的量子算法并建立相关数学理论。寻求具有重要科学和工程应用背景的非线性常微和偏微分方程的在高维空间的等价的线性表示,并在其基础上构造具有量子优势的量子模拟方法。探索这些算法中量子纠缠与量子非高斯门对量子优势的影响,算法在近期和远期物理平台实现的数学理论基础,从而获得两者的最佳结合。研究流体力学、动理学方程和分子动力学的具有量子优势的量子算法并建立相关的数学理论。和实验团队合作实现上述部分模拟量子算法。

  研究Nielsen几何框架中满足复杂性条件的黎曼度量的存在性;找到最佳逼近的复杂性度量并研究其几何性质;将 Nielsen 的几何框架引入拓扑量子计算;研究量子不变量的量子复杂度;研究量子不变量复杂度与经典拓扑复杂度的关系。给出量子场论(或共形场论)中量子复杂度的恰当数学定义;在有严格定义的全息对偶模型(例如 CS/WZW 对偶)中研究全息复杂度;研究一些简单的时空模型(例如 SYK 模型),并在其上研究时空几何与量子复杂度。研究Chern-Simons理论的几何量子化,并研究其算子空间的量子复杂度;研究 Mahler 测度的几何量子化,并将其与量子复杂度建立联系。在几何复杂度理论的框架下研究量子复杂度;研究计算行列式复杂度的量子算法并研究该算法的量子复杂度。

  研究薛定谔方程、波动方程、Dirac方程与输运方程之间的内在联系,建立薛定谔方程解的色散效应与相应的输运方程解的矩估计的关联性。研究带位势薛定谔算子的谱理论及色散估计,进而研究带位势薛定谔方程在能量空间中的整体适定性与散射理论。研究离散情形线性、非线性薛定谔方程的演化行为,在离散曲率流背景下建立薛定谔方程的量化估计理论,探索曲率流下薛定谔方程的演化规律。研究Heisenberg不确定性原理,建立带位势薛定谔算子对应的Hardy型与Morgan型不确定性原理。

地址:广东省广州市天河区88号 客服热线:400-123-4567 传真:+86-123-4567 QQ:1234567890

Copyright © 2012-2025 彩票平台- 彩票网站- 彩票APP下载 【官网推荐】 版权所有 非商用版本